作者单位
摘要
四川农业大学 食品学院, 四川 雅安 625014
以猪骨和乙二胺为碳源和氮源, 通过一步水热法合成了氮掺杂碳量子点(N-CQDs), 并优化其制备条件。通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射图(XRD)、紫外-可见吸收光谱(UV-Vis)和X射线光电子能谱(XPS)技术, 研究了N-CQDs的结构和光学性质及元素组成。所制备的N-CQDs具有较高的量子产率(26.4%), 平均粒径为2.34 nm, 在365 nm紫外光照射下呈现出明亮的蓝色荧光。研究发现Co2+对N-CQDs有良好的猝灭作用, 从而建立了一种快速检测Co2+的新方法。N-CQDs荧光猝灭强度与Co2+浓度在0~15 μg/mL和30~80 μg/mL呈良好的线性关系, 检出限为20 μg/L, 加标回收率为97.26%~109.14%, RSD<3.24%, 能够应用于实际水样中Co2+含量的测定。
氮掺杂碳量子点 猪骨 荧光检测 nitrogen-doped carbon quantum dots pig bone fluorescence detection Co2+ Co2+ 
发光学报
2021, 42(11): 1818
作者单位
摘要
南京邮电大学 通信与信息工程学院, 南京 210003
建立螺旋凹槽结构模型, 具有不同自旋角动量的光束入射到该结构后激发表面等离激元, 螺旋凹槽结构的螺旋性与光子自旋角动量耦合, 使得不同自旋偏振光激发的表面等离激元具有不同的强度分布.通过螺旋凹槽激发的表面等离激元的强度分布获得入射光的自旋角动量.利用有限元方法计算了左旋偏振光与右旋偏振光激发的表面等离激元在螺旋凹槽中心的光场强度比, 最大消光比达到168, 实现对光子的自旋角动量的检测.在数值仿真中, 分析了不同入射光波长的消光比, 入射光波长在600~740 nm范围内消光比高于50, 其中入射光波长为670 nm时的检测效果最佳; 此外, 研究螺旋凹槽结构参量对消光比的影响, 当凹槽宽度为200 nm,凹槽深度为70 nm, 匝数为2时, 消光比最大, 螺旋凹槽结构检测光子自旋角动量的能力最强.该研究可为集成光学中光子自旋角动量的检测提供一种新途径.
表面等离激元 自旋角动量 有限元方法 螺旋凹槽结构 偏振 消光比 Surface plasmons Spin angular momentum Finite element method Spiral groove structure Polarization Extinction ratio 
光子学报
2019, 48(4): 0427002
刘爱萍 1,2,*任希锋 1,2
作者单位
摘要
1 中国科学技术大学中国科学院量子信息重点实验室,合肥 230026
2 中国科学技术大学量子信息与量子科技前沿协同创新中心,合肥 230026
通过双探针近场光学扫描显微镜在银纳米线上实现近场激发和近场收集表面等离子体,用一个探针在银纳米线的一端近场激发表面等离子体,另一个探针近场探测银纳米线上的表面等离子体强度分布,得到强度分布图.强度分布图显示表面等离子体在银纳米线的一端被有效激发并且有一部分表面等离子体沿着银纳米线和基底的界面传播到了另一端.用有限元法对银纳米线内的传播模式进行数值模拟,结果显示银纳米线内存在两种表面等离子体传播模式,分别为基模和高阶模.沿着银纳米线和基底介质之间传输的基模表面等离子体由于传输环境稳定,散射损耗小,实际传输长度接近模式传输长度,达10 μm以上;而高阶模表面等离子体由于部分裸露在空气中受表面缺陷散射的影响,散射损耗大,实际传输长度远小于模式传输长度.研究表明: 以能量高度束缚的基模表面等离子体作为载体,不仅可以实现低损耗传输,还可以减小集成器件之间的信号串扰,有效提高信息传输的安全性,在集成光学中具有重要应用.
表面等离子体 集成光学 近场光学扫描显微镜 纳米线 光学性质鉴定 数值分析 光学损耗 Surface plasmon resonance Integrated optics Near field scanning optical microscopy Nanowires Optical character recognition Numerical analysis Optical losses 
光子学报
2014, 43(4): 0424001
作者单位
摘要
1 College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing100083, China
2 Beijing Higher Institution Engineering Research Center of Animal Product, Beijing100083, China
3 Department of Food Science and Human Nutrition, Iowa State University, Iowa 50011, USA
4 College of Science, China Agricultural University, Beijing100094, China
FTIR Cheddar cheese Ripening Protein secondary structure 
光谱学与光谱分析
2011, 31(7): 1786

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!